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Abstract. We present mulls of calculations of the equilibrium density profile and related surface 
properties for liquid-vapour interface of simple fluids. The interface has been considered to be (i) 
planar and (ii) spherical, wi& some attention paid to the stability of small liquid droplets. These 
calculations are based on deNity functional theory, in p&icular the &adient approximation, in 
conjunction with the simplified random phase approximation Bhati-Young model for the bulk 
liquid. 

1. Introduction 

The simplest semiphenomenological theory of the structure and thermodynamics of the 
liquid-vapour interface is that due to Van der Waals [l]. In this theory, it is assumed that 
the Helmholtz free energy is a functional of the density, which can be approximated by a 
'local density' contribution plus a term that is proportional to the square gradient of the 
density, i.e. 

f b I  = I d 3 ,  f ( p ( r ) )  (1) 

with 

 PO)) = fi(p(r)) + p(r)uext(r) + fi(p(r))(Vp(r))' 
where the second term, ueXt(r), represents the contribution from any extemal potential (in 
our model, the gravitational potential). The term fo(p(v)) is the free energy density of the 
uniform liquid and f'(p(r))  is a positive coefficient that is allowed to vary with temperature. 

The approach we follow to determine f i ( p ( r ) )  was first introduced by Yang and co- 
workers (YFG theory) [Z]. This theory relates the coefficient f i ( p ( r ) )  to a microscopic 
quantity, the second moment of the direct correlation function (Dcp), C(r) ,  of the uniform 
fluid 

f*(p(r ) )  = % d3rrZC(r) 

where 4 and T denote the Boltzmann constant and the absolute temperature, respectively. 
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Following YFG theory, the grand potential functional, Q [ p ] ,  can be obtained as a 
Legendre transform of F [ p ]  using the chemical potential p, i.e. 

Q b l  = Fbl-  P 1 d3r d r ) .  

s 
(3) 

In order to stabilize the system, Q [ p ]  has to be minimized subject to the constraint that the 
total number of molecules fl is kept constant: 

d3r p(r) = 3. (4) 

The minimization of the integral in (3) subject to the constraint in (4) leads to an Euler- 
Lagrange-type equation: 

2f2(p(r))v2p(r) + fj (p(r))(Vp(r))' - d ( p ( r ) )  + P - Uat(r) = 0 

f;(p) = dfo@)/dp 

(5) 
where 

f,'(p) = dfz(p)/dp. 

The solution of (5) for prescribed boundary conditions gives the equilibrium density 

The surface tension y follows immediately [21: 
profile, p(r), in the interfacial region. 

m 

y = 2 S _ m d r f i ( p ( r ) ) ~ ~ p ( r ) ~ 2 .  (6) 

The YFG theory has been reformulated in an extensive review by Evans [3]. Several 
authors have applied the theory for a planar liquid-vapour interface, for a single-component 
liquid [4-6] and binary mixtures [7-9]. To our knowledge, there have been no calculations 
for a spherical interface. During the last two decades, there have been several attempts to 
simulate the planar interface by both Monte Carlo [1&12] and molecular dynamics [121 
approaches, but only one computer simulation study for liquid droplets [13]. 

In next section we write down the outlines of our model for the bulk liquid with emphasis 
on the Bhatia-Young [14] approximation. In section 3 we explain the numerical calculations 
for solving (5) for both planar and spherical interfaces. In section 4 we present our results. 
We present our conclusions in section 5. 

2. Model for the bulk liquid 

We consider a system of particles interacting via a LennardJones (U) 12-6 pair potential, 
characterized by a hard-sphere diameter U and well depth B :  

which can be split into reference potential, V=F(r), and attractive tail, Vhl(r), contributions. 
Thus we adopt the following splitting: 



Thermodynamic properties of liquid-vapour interface 6967 

For simplicity, we have considered U to be a temperature- and density-independent 
parameter. This makes the numerical solution of (5) much less time consuming. 

The free energy of the repulsive reference system characterized by the potential V=r(r) 
can be replaced with that of an equivalent system of hard spheres (Hs) with diameter U. The 
bulk properties of the hard-sphere reference system are those obtained from the solution of 
the familiar Percus-Yevick approximation t15.161 in conjunction with the compressibility 
equation of state. 

Finally, the Helmholtz free energy density fa@), pressure P ( p )  and chemical potential 
~ ( p )  for the bulk liquid are. given within the mean field approximation [4,5,14], 
respectively, by 

P(P) = PHs(P) + V d O )  (10) 

where c,l(O) represents the long-wavelength limit of the Fourier transformation of Vtg(r): 

m 
i&(q) = p l  Vtl(r)acsinqrqr4nr2dr. 

Within the random phase approximation (RPA) 1141 we may write the Omstein-Zemike 
direct correlation function. C(r), as 

Equations (8). (9) and (10) form a closed set of equations which determine, explicitly, the 
phase diagram of the bulk phases, while (12) for C ( r )  is needed for the surface properties 
determined by the solution of (5). 

3. Numerical calculations 

For comparison, we have carried out the numerical solutions of (5) for two different 
interfacial geometries. 

3.1. Planar inteeace 

Assuming the fluid possesses a planar interface parallel to the x-y plane, equation (5), in 
the absence of an extemal potential, reduces to 

whose solution gives the equilibrium density profile p ( z )  providing the boundary conditions 

P(0) = PL P @ )  = Pu. (13) 

However, the z axis is assumed to be normal to the interface; its origin is arbitrary. We 
considered z = 0 to be somewhere in the bulk liquid . 
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Figure 1. The reduced chemical potential ~ ' ( p )  against reduced densityp' at different isotherms 
tomer with a schematic diagram for the Maxwell equal-area construction. which is applied 
only in Lhe case of a planar interface. 

The coexistence bulk densities, p~ and pu, satisfy the mechanical and chemical 
equilibrium conditions, namely 

P ( P L )  = P(P") = p ~ P ( P 3  = P(P") = F (14) 

where P@) and p ( p )  are calculated from (9) and (lo), respectively. 
Equivalently, we can apply the Maxwell equal-area construction to (lo), i.e. 

where p. < p < p~ and p ( 3 )  = p. 
A typical p(p)  against p family of curves at different isotherms, together with a 

schematic diagram for the Maxwell equal-area conslmction, is shown in figure 1. The 
coexistence densities pr. and pu at different isotherms are shown in figure 2. Finally, it is 
straightforward to calculate the surface tension y by performing the numerical integration 
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Figure 2. Phase diagram of liquid-vapour Mexistence. Points: planar interface; full curves: 
spherical interface. ( R e d u d  units are used.) 

3.2. Spherical interface 

We now consider a liquid droplet with a spherically symmetric surface in the presence 
of a very weak external potential. In this case it is easier to take the origin at the drop 
centre. Because of the symmetry, the density varies only radially, and the partial differential 
equation (5) reduces to an ordinary one in the radial distance r: 

and for the surface tension, (6) becomes 

Here the necessary boundary conditions for (5b) are 

P(0) = PL P(@ = P" 

where p L  and p. are self-consistently determined from 
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Figure 3. Density profile of the liquid-vapaur interface (in reduced uniu) a different isolhams. 
(a) Planar interfare. (b) Spbaical interface. 
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Equation (17) is the gradient expansion expression for the generalized Young-Laplace 
equation which ensures the condition of mechanical equilibrium 121. Thermodynamically, 
a liquid drop of critical nucleation radius R is stable when the surface tension y is related 
to the pressure difference between the bulk liquid and vapour through the familiar Young- 
Laplace relation [17] 

The number of molecules in each drop is, generally, defined as 

R 
N =i d3rp(r). 

We have carried out two different sets of calculations for solving (5b). The first set is 
related to an open system of constrained volume, temperature and chemical potential while 
the number of molecules is not kept constant. In this system, the boundary conditions 
given by (16) and the condition of uniform chemical potential expressed by (18) hold and 
are known in advance; the solution of (5b) is then straightforward. The results of these 
calculations are demonsmted in figures 3-5 and table 1. 

20 i 

Temperature T X  

Figure 4. Reduced surface thickness. BS dculated from (7.2). against reduced temperature. 
Points: planar interface; full curves: spherical interface. 

The second set of calculations is for a closed system in which the number of molecules 
is fixed while the Lagrange multiplier is taken to be the chemical potential of a uniform 
vapour, because we are interested in a liquid drop at equilibrium with a uniform vapour 
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Temperoture T' 

Figure 5. Reduced surface tension against reduced tempemlure. Points: planar interface; full 
curves: spherical interface. 

phase rather than in the opposite case of a vapour bubble in equilibrium with a bulk liquid, 
i.e. (18) is to be replaced by 

(21) 
To be more specific, in order to fix N at different temperatures the following steps are to 
be followed. 

(i) Start with an initial estimate of p~ and p., equations (16) and (21) hold, and then 
the solution of (5b) gives the equilibrium density profile p ( r ) .  

(ii) Substitute p ( r )  into (3). (6b), (19) and (20) to calculate Q[p(r)] ,  y ,  R and N, 
respectively. 

(iii) Keep p" fixed and change p~ to generate a set of solutions p ( r )  and the 
corresponding Q[p(r)], R and N. Monitor Q[p(r)] as a function of R. The maximum 
of Q[p(r)]  gives the radius of the. thermodynamically stable drop. 

(iv) Change p. and repeat steps (iHiii) to fix the number of molecules N in such a 
thermodynamically stable drop. 

The results of the second set of calculations are shown in table 2 and figure 6. 
Since (5a) and (5b) are complicated non-linear differential equations, it is not feasible 

to get analytical solutions. Numerically, the solution is based on a mixed method of an 
initial-value problem 'four-steps' Runge-Kutta method [ 181 and the shooting technique. 

- 
LL = LL(P"). 

4. Results and discussion 

Throughout the whole set of results, we have carried out our calculations in reduced units. 
Thus, for density: p' = pu3; for temperature: T* = ksTfc; for pressure: p' = pu3/e;  
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Table 1. Comparison of bulk and surface propties for the planar (P) and Spherical (S) 
interfaces. A P  = P(PL) - P(A) (all quantities are in reduced units). 

T AP PL P" N FIN Y D R 
0.40 0.0 0.9360 0.0001 - -6.612 3.832 2.50 - P 

1.2665 0.9703 

050 0.0 0.8438 
0.6212 0.8745 

0.60 0.0 0.7556 
0.3007 0.7824 

0.70 0.0 0.6670 
0.1341 0.6896 

0.80 0.0 05730 
0.0489 0.5908 

0.90 0.0 0.4635 
0.0103 0.4756 

0.95 0.0 0.3932 
0.0024 0.4014 

0.99 0.0 0.3064 
0.0001 0.3098 

0.0034 

0.0013 
0.0027 

0.0061 
0.0095 

0.0181 
0.0237 

0.0418 
0.0490 

0.0868 
0.0942 

0.1269 
0.1332 

0.1903 
0.1937 

774 -6.521 3.906 

- -5.874 2.200 
1145 -5.698 2238 

- -5.445 1.257 
1723 -5.317 1.297 

- -5.382 0.677 
2596 -5.214 0.685 

- -5.535 0.314 
4474 -5.372 0.313 

- -6.201 0.0% 
10935 -6.039 0.095 

- -7.059 0.032 
26649 -6.906 0.031 

- -8.985 0.002 
265428 -8.876 0.002 

2.60 6.08 

2.80 - 
280 7.11 

3.m - 
3.30 8.38 

3.70 - 
3.90 10.08 

4.80 - 
4.90 12.73 

6.90 - 
7.10 18.37 

9.80 - 
10.20 26.03 

23.00 - 
23.60 58.81 

S 

P 
S 

P 
S 

P 
S 

P 
S 

P 
S 

P 
S 

P 
S 

1.1 

1 

0.9 
B 
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Figure 6. The reduced nitical temperature for microscopic liquid droplets 
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for chemical potential: p* = @ / E ;  for distances and diameters: r* = r/u; and for surface 
tension: y* = ya2/c. 

In figures 3(a) and 3(b) we plot the density profiles p( r )  as obtained from the numerical 
solution of ( 5 2 )  and (56), respectively. In figure 3(a) the zero of z is located in the bulk 
liquid, while in figure 3(b) the zero of r is taken to be at the drop centre. It is obvious that the 
profile is a monotonically decreasing function with increasing r and approaches the vapour 
density at a quite large r .  Furthermore, the width of the transition region of p( r )  is much 
sharper at low temperatures, while it becomes infinitely large at the critical temperature. 
For comparison, the profile of the spherical interface decreases more sharply than that of 
the planar interface at the same temperature, which can be related to the curvature effects 
of the interface. 

For the definition of the surface thickness, D, (the width of the transition region of p(r)  
is conventional), we follow the definition given in [ l ]  and used by several authors [MI. 
This is known as the 10-90 thickness, which is defined as 

where 

p,  = 0.9P" - 0.lPL p' = 0.9PL - O.lp,. 

In figure 4, we compare the surface thickness of a spherical interface with that of a 
planar interface calculated at the same temperature. In figure 5, we present our results 
for the surface tension for both the planar and spherical interfaces as calculated from (6a) 
and (6b), respectively. The differences at all temperatures are very small because all the 
droplets are large (R > 6u), and therefore their surface tension approaches that of the 
planar interface, It is remarkable that the surface tension approaches zero at the critical 
temperature, which agrees fairly well with the criticality of the liquid-vapour transition. 

For comparison, we also present in table 1 all available results for the bulk and surface 
properties of both types of interfaces; AP denotes the pressure difference, P(PL) - P(p,), 
which is non-zero in the case of a spherical interface according to the Young-Laplace [17] 
relation (19). Also, we present the free energy per particle, F I N ,  as defined as the sum 
of the free energy of a particle in the bulk liquid plus that for a particle at the equimolar 
surface [l]. 

Finally, in table 2, we present the surface and bulk properties for several liquid droplets 
each of a fixed number of molecules, N ,  and show the effect of temperature on the drop 
radius R. As is well known [ 191, this Young Laplace radius R provides the critical nucleation 
size of a liquid drop at a given temperature. It is quite difficult, numerically, to fix the N at 
different temperatures because of the numerical integration in (20). The uncertainty in N is 
found to be within 1%, which is not too bad, particularly for large droplets. From table 2 
we make the following observations. 

(i) For each droplet there is a critical temperature and pressure (marked by '+') at which 
the droplet evaporates. 

(ii) For a particular droplet, with increasing temperature the surface tension decreases 
while the surface thickness increases. This behaviour is exactly the same as in the case of 
a liquid-vapour interface of infinite size (a planar interface). 

(iii) The surface tension at the critical temperature decreases with increasing drop size. 
(iv) The free energy per particle can be considered as an indicator of the stability of each 

droplet against size increase. It is clear that the droplets with a larger number of molecules 
are more stable. 



Thennodynamic pmperries of liquid-vapour intefme 6975 

Ihble 2 The bulk and surface propexlies for several droplets with a number of molecvles in the 
range 1OW4OOOO. PL = P@L).  TIE critical temperatures and pressures are indicated by '+I. 

(All quantities are in reduced units.) 

N T PL PL FIN Y D R 
IOW 0.40 1.168 0.968 -6322 3.913 2.60 6.60 

m 

4wo 

WO 

100W 

20 OW 

30000 

400W 

0.45 
0.47 

0.40 
0.50 
0.60 
0.64 

0.40 
0.50 
0.60 
0.70 
0.78 

0.40 
0.50 
0.60 
0.70 
0.80 
0.84 

0.40 
0.50 
0.60 
0.70 
0.80 
0.89 

0.40 
050 
0.60 
0.70 
0.80 
0.90 
0.93 

0.95 

0.96 

0.868 
+ 0.768 
0.940 
0.519 
0.283 

+ 0.219 
0.752 
0.415 
0.227 
0.116 

+ 0.061 
0.657 
0.364 
0.199 
O.IM 
0.044 

+ 0.029 
0.556 
0.3M 
0.169 
0.086 
0.037 

+ 0.012 
0.441 
0.245 
0.134 
0.069 
0.030 
0.008 

+ 0.004 
+ 0.002 

+ 0.001 

0.921 
+ 0.902 
0.962 
0.870 
0.781 

+ 0.745 
0.957 
0.865 

0.686 
+ 0.61 1 

0.955 
0.862 
0.774 
0.684 
0.589 

+ 0.547 
0.952 
0.860 
0.771 
0.682 
0.587 

f0.488 

0.949 
0.856 
0.768 
0.679 
0.584 
0.473 

+ 0.433 
+ 0.401 
+ 0.383 

0.776 

-5.968 
-5.815 

-6.387 
-5.741 
-5.339 
. -5.238 

-6.282 
-5.672 
-5.364 
-5.219 
-5.312 

-6.518 
-5.692 
-5.353 
-5.247 
-5.383 
-5.550 

-6.326 
-5.764 
-5.361 
-5260 
-5.403 
-5.931 

-6.495 
-5.715 
-5.406 
-5.276 
-5.426 
-6.064 
-6.480 

-6.912 

-7.202 

2.953 2.70 6.70 
2.643 2.80 6.79 

3.921 250 8.23 
2,245 2.90 8.54 
1.275 3.20 8.90 
1 .OM 3.50 9.04 

3.916 2.50 10.28 
2.245 2.80 10.67 
1.278 3.20 11.10 
0.684 3.80 11.62 
0.373 4.60 12.13 

3.913 2.50 11.76 
2.244 2.80 12.17 
1.278 3.30 12.66 
0.685 3.90 13.28 
0.314 4.80 14.02 
0.211 5.50 14.44 

3.906 2.50 13.88 
2241 2.80 14.41 
1.278 3.20 ' , 14.95 
01685 3.90 15.67 
0.315 4.80 16.54 
0.111 6.70 17.71 

3.895 250 17.43 
2.236 2.80 18.06 
I .276 320 18.79 
0.685 3.80 19.65 
0.316 4.80 20.72 
0.0% 7.00 22.35 
0.053 , 8.50 23.09 

0.031 10.20 27.11 

0.022 11.40 30.22 

For further illustration, we plot in figure 6 the critical temperature T, as a function of 
droplet size. It is clear that T, increases exponentially with N until it reaches asymptotically 
the critical temperature for the planar interface which corresponds to a droplet of infinite 
size. 

5. Conclusion 

To conclude, the following observations are in order. 
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(i) At this level of description, our model is applicable to all noble gas liquids simply 
by fitting the potential parameters, U and E, with their corresponding experimental values 
(for details, we refer the reader to [51). 

(ii) The gradient expansion together with the simplified random phase approximation 
give a fairly good account for the liquid-vapour interface and explain, qualitatively, the 
behaviour of liquid droplets at different temperatures. 

(iii) To assess the accuracy of our model we may compare OUI results for much 
smaller droplets (N < 1000) with the molecular dynamic calculations of Powles and co- 
workers [13]. We are investigating this at present 

(iv) The satisfactory results obtained in this work for single-component liquids suggest 
that we may undertake with some degree of confidence the more probing calculations of 
the surface segregation of liquid-mixture droplets. 
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